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Abstract. Emerging non-standard applications like the production of
high-quality spatial sound pose new challenges to data management. Be-
side the need for a flexible transactional management of complex hier-
archical scene descriptions a main requirement is the support of cooper-
ative processes allowing a group of authors to edit a scene together in
a distributed environment. Based on previous work on cooperative and
non-standard transactions we present in this paper a transaction model
and protocol for XML databases addressing this issues.

1 Introduction

In recent years, XML has been widely established as a data exchange format but
also as a native data format for (semi-)structured data. XML data management
is particularly well suited in application domains where a fixed structure of data
is too restrictive and where hierarchical structures have to be represented. In
this way, XML data management can be seen as a successor of object-oriented
database technology. An example of an emerging application domain from which
we derive the motivation for our work presented here is media production, e.g.
the production of movies, sounds, and graphics. The authoring process in this
domain is typically characterized by

(1) the incremental construction of scenes which are often represented as graphs
with varying structures.
For example, sound production in high quality spatial sound systems, like
the IOSONO system1, is based on an object-oriented modelling of scenes.
The scene is rendered at runtime to compute the signals for a large number
of loudspeakers installed in the listening room. In such a system, a scene
consists of several audio objects with properties as well as spatial and tem-
poral relationships describing position, movement, start time and duration
of the sound [1]. Scenes are organized in several layers such as dialog, foley,
effects, atmosphere and music.

(2) the duration and cooperativeness of the construction process.
In bigger projects we already encountered situations where up to 60 sound
designers in up to 8 different studios – located all over the world – are

1 www.iosono-sound.com
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working simultaneously on one sound production project. Each designer is
responsible for a part of a scene, e.g. modelling special effects, while others
model the actors’ dialogs. Both groups must know the current state of the
other group’s work because for example the volume of a speaker has to be
set with respect to the background noise.

Basically, (1) can be addressed by representing a scene as an XML graph stored
in a database. Today, commercial DBMS provide support for XML data manage-
ment, either by treating XML documents as CLOB objects or by “shredding”
the document into a set of tables. In both cases, the transactional support is
restricted to the native (relational) structure and is not adopted to the special
characteristics of (hierarchical) XML data.

The alternative of using a native XML DBMS promises a better handling of
XML data, e.g. wrt. querying, but regarding transactional support these systems
are more or less still in their infancies.

Orthogonal to the scheme of storing the scene data we can look at the issue
of supporting cooperative work (2) in different scenarios:

Single User: The simplest and in fact non-cooperative case is the situation
where a single author (sound designer) is working on the sound produc-
tion. Though, basic database functionality like persistence and recovery is
required, advanced techniques for distributed and cooperative operation are
not needed.

Workgroup: When multiple designers work on the same scene together in a
workgroup, their updates have to be synchronized. In this scenario a central
repository is needed but can be extended by local caches or databases for
better response times.

Workspace: In a large-scale scenario multiple studios (maybe situated on dif-
ferent continents) work on the same scene data. Here, permanent connections
to a central repository (as in the case of the workgroup scenario) may not
be assumed. Therefore, the different users work on their own workspaces
requiring a decoupled synchronization technique similar to version control
systems like CVS.

In our work we focus on the workgroup scenario because it is the most interesting
one for the intended application of sound production. In any case, the notion of
transaction is required and because of the characteristics of work we need long
running, nested transactions. Furthermore, in order to allow a cooperative work
on the same scene (e.g. on different layers of a scene) modifications should be
visible to other authors before the end of the global transaction.

Based on these observations and the above mentioned challenges of data
management in media authoring processes, we present in this paper an approach
using an open-nested transaction model for XML data supporting cooperative
processes. The remainder of the paper is structured as follows. In Section 2
we give a brief survey on related work. Based on this, we introduce in Section 3
our cooperative transaction model. Next, we describe the protocol implementing
this model by a combination of locking and notification in Section 4. Finally, we
conclude the paper and point out to future work.
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2 Related Work

For many years transactions have been used to enable concurrent access to a
database where each transaction adheres to the ACID properties. A very com-
mon means to enforce serializability are lock protocols. They have advantages
like low complexity and disadvantages like limiting concurrency. Thus, many
variants have been developed; 2PL [2] and hierarchical locks [3] to mention only
a few.

In order to overcome the disadvantage of limited concurrency advanced trans-
action models have been developed by relaxing some of the ACID properties. One
principle is to divide a transaction into several smaller ones. This concept is for
example used by nested transactions [4,5] and multi-level transactions [6,7]. With
the advent of CAD systems with typically long transactions chained transactions
and sagas [8] have been proposed. Whereas both of these concepts require the
definition of subtransactions in advance, split/join transactions [9, 10] can be
used to determine subtransactions at runtime.

As XML became more important DBMS were extended by XML modules.
At first, it was sufficient to support XML as input and output format. But
since this limits querying abilities, first concepts for native XML databases have
been developed. In general, classic lock protocols are too restrictive in terms of
concurrency for use in XML DBMS. One possibility is to use path based locks
as proposed by several groups [11–14]. Natix [15] is a native XML DBMS that
recognizes that transaction management needs a non-traditional approach. How-
ever, the authors focus more on recovery and isolation, and use a lock manager
supporting multi granularity locking and strict two-phase locking.

Another possibility to realize concurrent access are protocols based on the
taDOM model, e.g., [16, 17]. They use multi granularity locking, apply the con-
cept of intensional locks on the path from the root node to the context node, and
provide lock conversion. taDOM models attributes and text content as special
nodes. By this, attributes or text can be locked without locking the original XML
node as a whole. Lock granularity and lock escalation can be adapted according
to the users needs.

As indicated in the introduction we need to allow multiple users to work on
the same XML document simultaneously. The approaches on XML databases
mentioned above do net (yet) pay attention to the requirements imposed by our
scenario where we have deal with long transactions adhering to an open nested
transaction model.

3 Transaction and Cooperation Model

The basic architecture of our solution is a client-server-model where the server
holds the latest version of the data and coordinates the clients. An arbitrary
number of clients can be connected to the server. Both client and server have
a DBMS to manage their data. The server maintains the global copy ensuring
data consistency. The client uses its local DBMS to manage its local copy of the
portion of the data that it downloaded from the server. Since we are working
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with XML data, we chose Berkeley DB XML2 for both client and server. For
the local DBMS on client side, we can use any standard transaction model since
only one user is working on the local copy. Using the DBMS, however, the client
may also benefit from database functionality like persistence and recovery.

In the following we at first identify a transaction model that fulfills the re-
quirements stated in the introduction. Then, we describe how notifications can
be used to make non-committed updates visible to other users.

3.1 Transaction Model

As motivated in the introduction transactions may endure a rather long time
period. In order to support concurrent access to the common global database
we need a transaction model that efficiently supports long transactions but still
allows multiple users to work concurrently on the same data. This suggests the
use of a nested transaction model [4, 5] where a global transaction is divided
at runtime into several subtransactions. In our model a subtransaction is not
vital for the global transaction. Thus, when a subtransaction is aborted not all
changes have to be undone but only those that have been made by the aborted
subtransaction. The global transaction goes on until the global commit or the
global abort.

Client Server

user-level
primitives

query checkout
update checkin

savepoint subcommit, publish, subbegin
revert subabort, subbegin

begin, abort, commit begin, abort, commit

system-level
primitives

lock, unlock lock, unlock
subscribe, unsubscribe subscribe, unsubscribe

Table 1. Primitives at Client and Server

Having started a transaction the user issues commands on the client side. The
client communicates with the server to initiate corresponding actions. Table 1
lists the main primitives that are supported by client and server instances. They
can be divided into two groups: user-level primitives and system-level primitives.
The former are issued more or less by the user himself, the latter by the system
transparently to the user.

Figure 1 illustrates a sample sequence of primitives that are issued in a typical
transaction. When the user starts to work a global transaction is started (begin).
Since we are using a nested transaction model, the first subtransaction starts at
the same time (subbegin). The query primitive allows the user to read elements
of the XML document that are identified using XPath. Hence, this primitive
corresponds to the classic read operation. Its counterpart, i.e. a write operation,
is represented by the update primitive. The query primitive results in a checkout
at the server retrieving the latest version of the read data. The update primitive
of the client is realized by the checkin primitive at the server. This, however,
2 http://www.sleepycat.com/products/bdbxml.html
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begin

begin
subbegin

checkout
subscribe

checkin
lock

subcommit
publish
subbegin

true/
false

query update savepoint commit

subcommit
commit

Client

Sub1

T1

Sub2

Server

Transactions

Fig. 1. Basic Sequence of Actions for Transactions

requires another step: first the server is trying to lock the data that is to be
updated. If the lock has been acquired the data is updated, if not the attempt
to update is refused.

When the user decides for a savepoint the currently running subtransaction
commits and the next subtransaction is implicitly started. All changes that have
been made by the first subtransaction are now visible to other users – but may
not yet be changed by them. In case a subtransaction is aborted, all changes
that have been made since the beginning of the subtransaction are undone with-
out any effect on the global transaction. Finally, when the global transaction
commits, the current subtransaction is committed and all locks are released.

3.2 Cooperation Model

As mentioned above other users might need to see the changes of committed
subtransactions before the global transaction submits. In order to achieve such
a cooperative transaction model we use the concept of notifications. For this pur-
pose the server maintains a list of Listeners. Each entry is defined by two pieces
of information: the identifier of the corresponding client and an XPath expres-
sion that indicates a subtree of the XML document. Whenever a subtransaction
of another client commits, all clients that have registered for the affected data
are notified using the publish primitive (see Figure 1). When the client reads
data in a transactional context using the query primitive the client is implicitly
registered at the server for updates concerning the read data.

Figure 2 illustrates this concept in a situation where two transactions are
working on the same version of the data. Both transactions start with checking
out version V 1 from the server, they implicitly register for updates concerning the
retrieved data. Both transactions (T1 and T2) are now starting to work concur-
rently. When subtransaction Sub1.1 of T1 commits, the changes are propagated
to the client that T2 is running on. The client updates the affected portion of
local data. Afterwards, the data of both clients corresponds to subversion V 1.1.
By the use of our locking protocol that we use for synchronization (Section 4) it
is not possible that both transactions changed the same data records.

In case another transaction T3 would now checkout the current version from
the server it would retrieve the basic version V 1 and all updates of already com-
mitted subtransactions so that the local version of T3’s data would correspond
to subversion V 1.1.
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Fig. 2. Example for Versioning Using Listeners

After subtransaction Sub1.1 of T1 has committed assume that now sub-
transaction Sub1.1 of T2 commits. Then, the client that T1 runs on retrieves
the updates made by Sub2.1 of T2. Both clients now have the same subversion
V 1.2. Finally, the global transaction T1 commits. The server now retrieves the
changes, releases the locks still held by T1, and converts the global version to
V 2. After having notified the client that T2 runs on, the corresponding client
updates its local data, and now works on version V 2. In case T2 now aborts, then
the changes made by the already committed subtransactions of T2 are undone
and the registered clients are notified. In case T2 submits the the server creates
version V 3 and notifies the registered clients.

4 Transaction Protocol

In this section we at first identify operations that need to be supported and
their demands on a suitable locking protocol. Then, we present such a protocol
that we use for synchronization. Finally, we show how to increase concurrency
by using a special internal representation.

4.1 Operations and Lock Compatibility
The set of relevant operations that we need to support consists of: (i) edit, (ii)
delete, (iii) add, and (iv) move. XML documents consist of nodes organized in
a hierarchical structure. Each node may contain text and attributes and might
have attached child node. To change the content of a node’s text or attribute, the
edit operation is used. Obviously, this requires an exclusive lock so that no other
user is able to edit attributes and text at the same time. The delete operation
can be used to delete attributes, nodes, text, or whole subtrees that are attached
to a given node n. Since the deletion of attributes and text directly affects n,
we need n to be locked exclusively. In case we want to delete a node n1 (or a
subtree rooted with n1) that is attached to n as a child, we only need a shared
lock on n and an exclusive lock on n1 (and on all subtree nodes).

The add operation can be used to attach attributes, text, child nodes, or
subtrees to node n. Since text and attributes are an integral part of n we need
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an exclusive lock on n for adding text and attributes. Intuitively, all we need
to attach child nodes or subtrees to n is a shared lock on n. Thus, adding a
child node n1 and deleting another child node n2 (both children of n) by two
concurrent transactions is possible at the same time.

The move operation can be used to move attributes, nodes, text, and subtrees
from node n to node m. We can treat this as a deletion followed by an insertion
so that we can use the two operations introduced above. Table 2 shows the lock
matrix that results from the considerations discussed so far.

edit delete add

attribute XL on node XL on node XL on node
text XL on node XL on node XL on node
node – XL on node, SL on parent SL on parent

subtree – XL (root and descendants), SL on parent SL on parent

Table 2. Operations and required locks when attributes and text cannot be locked
apart from the corresponding node – XL = Exclusive Lock, SL = Shared Lock

This is still rather restrictive. Under the assumption that we can lock at-
tributes and text independently from the corresponding XML nodes, we can
achieve a higher level of concurrency: e.g. concurrent operations on attributes
and text are now compatible with each other. Furthermore, these operations are
compatible with concurrent deletion and addition of child nodes. Table 3 shows
the resulting lock matrix.

edit delete add

attribute XL on attr. XL on attr., SL on corr. node SL on corr. node
text XL on text XL on text, SL on corr. node SL on corr. node
node – XL on node, SL on parent SL on parent

subtree – XL (root and descendants), SL on parent SL on parent

Table 3. Operations and required locks when attributes and text can be locked apart
from the corresponding node – XL = Exclusive Lock, SL = Shared Lock

Since we have to deal with only two kinds of locks (exclusive and shared), we
can apply the tree protocol that has been developed for hierarchical databases.
Thus, the remainder of this section first presents the tree protocol. Then, we
point out how to manage locks on attributes and text without locking the whole
node.

4.2 Tree Protocol

In contrast to most lock protocols the tree protocol [3] does not imply two phase
locking (2PL). It has been designed for use in hierarchically organized data
structures and thus can be used for XML data as well. The basic variant of this
protocol only knows one kind of locks: exclusive locks. The advanced variant
– that we consider – also knows non-exclusive locks. Any transaction Ti that
adheres to the following rules satisfies the advanced tree protocol and leads to a
serializable schedule:
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1. At first, Ti locks any node of the hierarchy – provided that any existing locks
are compatible

2. Ti locks each node at most once – there is no lock conversion
3. locks may be released at any time – in contrast to 2PL protocols
4. Ti may lock node u if and only if it is currently holding a lock on a predecessor

(father) of u
5. LS(Ti) ⊆ µ(L(Ti)), where LS(Ti) is the set of shared locks held by Ti,

L(Ti) the set of all locks (shared or exclusive) held by Ti, and µ(W ) = {v ∈
W |there exists at most one w ∈ W such that v and w are neighbors}

Note that if Ti satisfies conditions 1−4 it fulfills the basic tree protocol [18]. The
fifth condition assures that deadlocks cannot occur when allowing non-exclusive
locks.

With respect to Section 4.1 using the tree protocol means that locks are
acquired based on the tree protocol and may be released before the commit.
However, in our implementation those locks that are required by the supported
operations (Table 3) need to be held until the global transaction commits. Only
then can be guaranteed that a rollback is possible without side-effects on other
transactions.

4.3 XML Representation

In order to improve concurrency on XML nodes especially with respect to editing
attributes and text, we apply the taDOM concept [19] and adopted it to our
needs.

Representing XML Documents for Fine Grained Locking taDOM [19]
has originally been designed for supporting a fine grained lock granularity for
documents that are accessed by the DOM API. In contrast to our application
and access methods the DOM API knows functions like getAttributeNode(), get-
Value() etc. In order to support these functions efficiently, the authors split up
XML nodes into several parts, e.g. each XML node is represented by one el-
ement node ne, one text node nt (as child of ne) and one string node ns (as
child of nt). If the original XML node contained attributes then an additional
attribute root node nAR is inserted as child of the ne. For each attribute, nAR

has one attribute child node nai where each nai has a string node that contains
the attribute value.

Since we do not aim to support such APIs we do not need such a large number
of nodes. Thus, we reduce the overhead by simply splitting up an XML element
node into one element node ne, one child for the contained text nt, one attribute
root node nAR with one attribute child node nai for each attribute – nai contains
all information about the attribute. In short, we keep text nodes and string nodes
together in one node. The separation of attributes from the original node has
two advantages: first, locking attributes apart from their nodes is possible and
second, locking all attributes at once promises to be low effort.

Figure 3 illustrates these concepts with an example. It shows a small extract
of a sample XML file and its corresponding representation where we distinguish
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between element nodes, text nodes, attribute root nodes, and attribute nodes.
Inner nodes of XML documents are represented by element nodes.

<scene id=”scene1”>
  <room id=”room1”>
    <layer id=”layer0”>
      <audio id=”Tom” 
            begin=”0” end=”20”>
        <sound src=”Tom1.wav” 
            begin=”0” end=”10”/>
        
            Tom talking in sleep
        </comment>
      </audio>
    </layer>
  </room>
</scene>

<comment userID=”123”>

element node

text node

name

attribute root node

attribute nodetext

name

text

scene

1

room

1.3

layer

1.3.3

1.1

scene1

id

1.1.3

layer0

id

1.3.3.1.3

audio

1.3.3.3

0

begin

20

end

Tom

id

123

userID

Tom1.wav

src

0

begin

10

end

Tom talk

commentsoundsource

1.3.3.3.3

1.3.3.3.3.1

1.3.3.3.3.1.3 1.3.3.3.3.1.5 1.3.3.3.3.1.7

1.3.3.3.5

1.3.3.3.5.3 1.3.3.3.5.1

1.3.3.3.5.1.3

1.3.3.3.1

1.3.3.3.1.3 1.3.3.3.1.5 1.3.3.3.1.7

1.3.1

1.3.3.1room1

id

1.3.1.3

Fig. 3. Internal XML Representation

DeweyIDs By using DeweyIDs [20] we assign a unique identifier to each node
and thus enable an efficient management of read and write sets. As we have
borrowed the idea of separating attributes from elements and using an extra
attribute root node to group them, we also adopt most of the adaptations of
DeweyIDs that were made to support taDOM. DeweyIDs are based on the dec-
imal classification and serially number all nodes in the same level with odd
numbers. With the exception of the document root node, the number 1 is only
assigned to attribute root nodes. This makes finding and identifying attributes
easy. The ID of a node is defined as the conjunction of the parent-ID and the
assigned number separated by a point. Thus, the prefix of each ID reveals its
level and unambiguously identifies the parent node and all ancestor nodes. Since
initially only odd numbers are used new nodes may be added at any position.
For instance, between DeweyIDs 1.3 and 1.5 we may add nodes with the follow-
ing IDs: 1.4.3, 1.4.5, etc. Figure 3 gives an example for the DeweyID numbering
scheme that we use in our implementation.

5 Conclusion

In this paper we have addressed the problem of concurrent access and modifi-
cation to XML documents. The application scenario demands that users may
see changes of other users whose global transactions have not yet committed.
To solve this problem we proposed an open nested transaction model that uses
the advanced tree protocol for synchronization. Notifications take care of prop-
agating recent updates to registered clients, so that they are always up-to-date.
Future work will consider to further increase concurrency. One possibility to
achieve this is releasing locks already with the commit of a subtransaction so
that other transactions may update the same elements before the global transac-
tion submits. Introducing compensating transactions might be a solution to the
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problem. However, it remains a task for future work to define such compensat-
ing transactions and maybe determine their actions without extensive interaction
with the user.
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